Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Mol Ther Oncol ; 32(1): 200786, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596288

RESUMO

Oncogenic drivers such as KRAS extensively modulate the tumor inflammatory microenvironment (TIME) of colorectal cancer (CRC). The influence of KRAS on modulating immune cell composition remains unclear. The objective of this study was to identify signatures of infiltrative immune cells and distinctive patterns that differ between RAS wild-type (WT) and oncogenic mutant (MT) CRC that explain immune evasion in MT tumors. A total of 7,801 CRC specimens were analyzed using next-generation DNA sequencing, whole-exome sequencing, and/or whole transcriptome sequencing. Deficiency of mismatch repair (dMMR)/microsatellite instability (MSI) and tumor mutation burden (TMB) were also assessed. KRAS mutations were present in 48% of CRC, similarly distributed in patients younger than vs. 50 years and older. In microsatellite stable (MSS) KRAS MT tumors, composition of the TIME included higher neutrophil infiltration and lower infiltration of B cells. MSI-H/dMMR was significantly more prevalent in RAS WT (9.1%) than in KRAS MT (2.9%) CRC. In MSS CRC, TMB-high cases were significantly higher in RAS MT (3.1%) than in RAS WT (2.1%) tumors. KRAS and NRAS mutations are associated with increased neutrophil infiltration, with codon-specific differences. These results demonstrate significant differences in the TIME of RAS mutant CRC that match previous reports of immunoevasive characteristics of such tumors.

2.
Indian J Med Res ; 159(2): 130-141, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38528817

RESUMO

BACKGROUND OBJECTIVES: Irrational prescribing practices have major consequences on patient safety and also increase the economic burden. Real-life examples of impact of irrational prescription have potential to improve prescribing practices. In this context, the present study aimed to capture and evaluate the prevalence of deviations from treatment guidelines in the prescriptions, potential consequence/s of the deviations and corrective actions recommended by clinicians. METHODS: It was a cross-sectional observational study conducted in the outpatient departments of tertiary care hospitals in India wherein the 13 Indian Council of Medical Research Rational Use of Medicines Centres are located. Prescriptions not compliant with the standard treatment guidelines and incomplete prescriptions with respect to formulation, dose, duration and frequency were labelled as 'prescriptions having deviations'. A deviation that could result in a drug interaction, lack of response, increased cost, preventable adverse drug reaction (ADR) and/or antimicrobial resistance was labelled as an 'unacceptable deviation'. RESULTS: Against all the prescriptions assessed, about one tenth of them (475/4838; 9.8%) had unacceptable deviations. However, in 2667/4838 (55.1%) prescriptions, the clinicians had adhered to the treatment guidelines. Two thousand one hundred and seventy-one prescriptions had deviations, of which 475 (21.9%) had unacceptable deviations with pantoprazole (n=54), rabeprazole+domperidone (n=35) and oral enzyme preparations (n=24) as the most frequently prescribed drugs and upper respiratory tract infection (URTI) and hypertension as most common diseases with unacceptable deviations. The potential consequences of deviations were increase in cost (n=301), ADRs (n=254), drug interactions (n=81), lack of therapeutic response (n=77) and antimicrobial resistance (n=72). Major corrective actions proposed for consideration were issuance of an administrative order (n=196) and conducting online training programme (n=108). INTERPRETATION CONCLUSIONS: The overall prevalence of deviations found was 45 per cent of which unacceptable deviations was estimated to be 9.8 per cent. To minimize the deviations, clinicians recommended online training on rational prescribing and administrative directives as potential interventions.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Prescrições , Humanos , Estudos Transversais , Centros de Atenção Terciária , Índia/epidemiologia , Antibacterianos/efeitos adversos , Prescrições de Medicamentos
3.
Sci Rep ; 14(1): 2988, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316805

RESUMO

Ginger has been associated with a decreased incidence of colorectal cancer (CRC) through reduction in inflammatory pathways and inhibition of tumor growth. Recent pre-clinical models have implicated changes in the gut microbiome as a possible mediator of the ginger effect on CRC. We hypothesized that, in adults previously diagnosed with a colorectal adenoma, ginger supplementation would alter the fecal microbiome in the direction consistent with its CRC-inhibitory effect. Sixty-eight adults were randomized to take either ginger or placebo daily for 6 weeks, with a 6-week washout and longitudinal stool collection throughout. We performed 16S rRNA sequencing and evaluated changes in overall microbial diversity and the relative abundances of pre-specified CRC-associated taxa using mixed-effects logistic regression. Ginger supplementation showed no significant effect on microbial community structure through alpha or beta diversity. Of 10 pre-specified CRC-associated taxa, there were significant decreases in the relative abundances of the genera Akkermansia (p < 0.001), Bacteroides (p = 0.018), and Ruminococcus (p = 0.013) after 6-week treatment with ginger compared to placebo. Ginger supplementation led to decreased abundances of Akkermansia and Bacteroides, which suggests that ginger may have an inhibitory effect on CRC-associated taxa. Overall, ginger supplementation appears to have a limited effect on gut microbiome in patients with colorectal adenomas.


Assuntos
Adenoma , Neoplasias Colorretais , Microbiota , Gengibre , Adulto , Humanos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Neoplasias Colorretais/patologia , Fezes/química , Adenoma/tratamento farmacológico , Suplementos Nutricionais
4.
Exp Neurol ; 375: 114720, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342181

RESUMO

BACKGROUND: The development of efficient therapies for Alzheimer''s disease is essential since it is a serious public health problem. This investigation sought to ascertain any potential synergistic benefits of treating Alzheimer's disease with IRL-1620 monotherapy in addition to Donepezil. Additionally, the effect of IRL-1620 was evaluated using different doses (5 µg/kg,7 µg/kg, and 9 µg/kg). The study further assessed neurobehavioral, biochemical, molecular, and histopathological parameters to evaluate the efficacy of both IRL1620 by its own and in association with Donepezil. Fifty-eight adult male Wistar rats were allocated to eight experimental groups. A dose-ranging study of IRL-1620 was conducted using different doses administered via intravenous injection. Alzheimer's disease was induced by Aß administration, and treatment arms included disease Control (Sham), Donepezil monotherapy, and combination treatment with IRL-1620 5 µg/kg (Dose selected from the dose-ranging study). The treatment using IRL-1620 (9 µg/kg) intravenously and Donepezil (1 mg/kg orally) both on its own and in addition substantially enhanced memory in comparison with the control group (p < 0.05). Dose of IRL-1620 (9 µg/kg) intravenously, escape latency decreased and the time spent in the target quadrant was considerably increased, and they further benefited from combination therapy. Moreover, IRL-1620 (9 µg/kg) intravenously and combination treatment reduced lipid peroxidation and acetylcholinesterase levels while increasing antioxidant enzyme levels. Immunohistochemistry and molecular analysis revealed enhanced expression of neurotrophic factors with combination treatment. The combination of IRL-1620 and Donepezil showed significant improvements in memory and neurobehavioral parameters (p < 0.05). Alzheimer's disease in male Wistar rats. These results indicate to the probable therapeutic advantages of IRL-1620 and Donepezil in the management of Alzheimer's disease. The combination treatment exhibited enhanced effects compared to monotherapy, highlighting its potential promising therapeutic approach. Additional research is required to understand the mechanisms behind these synergistic benefits and to establish the ideal dosage and duration of therapy for therapeutic applications.


Assuntos
Doença de Alzheimer , Ratos , Masculino , Animais , Donepezila/uso terapêutico , Doença de Alzheimer/metabolismo , Ratos Wistar , Receptores de Endotelina , Acetilcolinesterase , Peptídeos beta-Amiloides
5.
Clin Exp Pharmacol Physiol ; 51(3): e13839, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302080

RESUMO

Epilepsy is a prevalent neurological disorder characterized by neuronal hypersynchronous discharge in the brain, leading to central nervous system (CNS) dysfunction. Despite the availability of anti-epileptic drugs (AEDs), resistance to AEDs is the greatest challenge in treating epilepsy. The role of sphingosine-1-phosphate-receptor 1 (S1PR1) in drug-resistant epilepsy is unexplored. This study investigated the effects of SEW2871, a potent S1PR1 agonist, on a phenobarbitone (PHB)-resistant pentylenetetrazol (PTZ)-kindled Wistar rat model. We measured the messenger ribonucleic acid (mRNA) expression of multi-drug resistance 1 (MDR1) and multi-drug resistance protein 5 (MRP5) as indicators for drug resistance. Rats received PHB + PTZ for 62 days to develop a drug-resistant epilepsy model. From day 48, SEW2871 (0.25, 0.5, 0.75 mg/kg, intraperitoneally [i.p.]) was administered for 14 days. Seizure scoring, behaviour, oxidative markers like reduced glutathione, catalase, superoxide dismutase, inflammatory markers like interleukin 1 beta tumour necrosis factor alpha, interferon gamma and mRNA expression (MDR1 and MRP5) were assessed, and histopathological assessments were conducted. SEW2871 demonstrated dose-dependent improvements in seizure scoring and neurobehavioral parameters with a reduction in oxidative and inflammation-induced neuronal damage. The S1PR1 agonist also downregulated MDR1 and MRP5 gene expression and significantly decreased the number of dark-stained pyknotic nuclei and increased cell density with neuronal rearrangement in the rat brain hippocampus. These findings suggest that SEW2871 might ameliorate epileptic symptoms by modulating drug resistance through downregulation of MDR1 and MRP5 gene expression.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Oxidiazóis , Tiofenos , Ratos , Animais , Pentilenotetrazol/efeitos adversos , Fenobarbital/efeitos adversos , Receptores de Esfingosina-1-Fosfato , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , RNA Mensageiro
6.
J Biomol Struct Dyn ; : 1-10, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247233

RESUMO

Influenza A virus subtype H3N2 is a highly infectious respiratory virus that is responsible for global seasonal flu epidemics. The current study was designed to investigate the antiviral activity of 150 phytocompounds of North Western Himalayas medicinal plants by molecular docking. Two target proteins of hemagglutinin of influenza virus A (PDB ID 4WE8) and Influenza virus H3N2 nucleoprotein - R416A mutant (PDB ID 7NT8) are selected for this study. Molecular docking was done by AutoDock vina tool, toxicity and drug-likeness prediction was done by protox II and Moleinspiration. MD simulation of best protein-ligand complexes was done by using Gromacs, version 2021.5. Molecular docking and toxicity data revealed that clicoemodin and rumexocide showed the best binding with both target proteins 4WEB & 7NT8. Clicoemodin showed the -7.5 KJ/mol binding energy with 4WE8 and 7NT8. Similarly, rumexoside showed the -7.6 KJ/mol binding energy with 4WE8 and -7.6 KJ/mol with 7NT8. Furthermore, Molecular dynamic simulation and MMPBSA binding free energy validated the stability of protein-ligand complexes. The current study suggested that clicoemodin and rumexocide are the promising inhibitors of H3N2 proteins hemagglutinin of influenza virus A and Influenza virus H3N2 nucleoprotein - R416A mutant, though there is further in vitro and in vivo validation is required.Communicated by Ramaswamy H. Sarma.

7.
Behav Brain Res ; 458: 114728, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-37923221

RESUMO

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with uncertain etiology and pathophysiology. Several studies revealed that the commonly used animal models like Valproic Acid (VPA) and Propionic Acid (PPA) do not precisely represent the disease as the human patient does. The current study was conducted on different chemically (VPA, PPA, Poly I:C, Dioxin (2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)) & Chlorpyrifos (CPF)) induced ASD-like animal models and validated the best suitable experimental animal model, which would closely resemble with clinical features of the ASD. This validated model might help to explore the pathophysiology of ASD. This study included rat pups prenatally exposed to VPA, PPA, Poly I:C, Dioxin & CPF within GD9 to GD15 doses. The model groups were validated through developmental and behavioral parameters, Gene Expressions, Oxidative Stress, and Pro-inflammatory and Anti-inflammatory cytokines levels. Developmental and neurobehavioral parameters showed significant changes in model groups compared to the control. In oxidative stress parameters and neuro-inflammatory cytokines levels, model groups exhibited high oxidative stress and neuro-inflammation compared to control groups. Gene expression profile of ASD-related genes showed significant downregulation in model groups compared to the control group. Moreover, the Poly I:C group showed more significant results than other model groups. The comparison of available ASD-like experimental animal models showed that the Poly I:C induced model represented the exact pathophysiology of ASD as the human patient does. Poly I:C was reported in the maternal immune system activation via the inflammatory cytokines pathway, altering embryonic development and causing ASD in neonates.


Assuntos
Transtorno do Espectro Autista , Clorpirifos , Dioxinas , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Ratos , Animais , Ratos Wistar , Dioxinas/efeitos adversos , Ácido Valproico/farmacologia , Citocinas , Clorpirifos/efeitos adversos , Poli I , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Comportamento Animal
8.
Indian J Pharmacol ; 55(5): 307-314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929409

RESUMO

BACKGROUND: The overexpression of P-glycoprotein (P-gp) contributes to drug resistance in patients with epilepsy, and the change of P-gp expression located at the blood-brain barrier alienates the anti-seizure effects of P-gp substrates. Thus, the present study explored the effect of fingolimod (FTY720) acting through an endothelin-sphingolipid pathway on P-gp-induced pentylenetetrazol (PTZ)-kindled phenobarbital (PB)-resistant rats. MATERIALS AND METHODS: PTZ kindling (30 mg/kg; i.p.) and PB (40 mg/kg; orally) were used to develop an animal model of refractory epilepsy. The effect of Fingolimod on seizure score (Racine scale), plasma and brain levels of PB (high-performance liquid chromatography), and blood-brain barrier permeability (Evans blue dye) was determined. Further, Fingolimod's neuroprotective effect was determined by measuring the levels of various inflammatory cytokines, oxidative stress parameters, and neurotrophic factors in rat brain homogenate. The Fingolimod's effect on P-gp expression was estimated by reverse transcriptase-polymerase chain reaction and immunohistochemistry in rat brain. The H and E staining was done to determine the neuronal injury. RESULTS: Fingolimod significantly (P < 0.001) reduced the seizure score in a dose-dependent manner and alleviated the blood-brain barrier permeability. It decreased the P-gp expression, which further increased the brain PB concentration. Fingolimod significantly (P < 0.01) reduced oxidative stress as well as inflammation. Moreover, it attenuated the raised neuronal injury score in a resistant model of epilepsy. CONCLUSION: The modulation of the P-gp expression by Fingolimod improved drug delivery to the brain in an animal model of refractory epilepsy. Therefore, S1P signaling could serve as an additional therapeutic target to overcome refractoriness.


Assuntos
Epilepsia Resistente a Medicamentos , Cloridrato de Fingolimode , Animais , Humanos , Ratos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Endotelinas/metabolismo , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Modelos Animais , Óxido Nítrico/metabolismo , Pentilenotetrazol/uso terapêutico , Convulsões/tratamento farmacológico , Esfingolipídeos/metabolismo
9.
J Biomol Struct Dyn ; : 1-11, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878051

RESUMO

Alzheimer's disease, marked by memory loss and cognitive decline, is associated with amyloid-beta (Aß) peptide accumulation in the brain. The enzyme neprilysin (NEP), crucial for Aß degradation, decreases with age and in sporadic Alzheimer's disease, leading to increased Aß build-up. This study hypothesized the targeting of enzyme HDAC6, believed to influence NEP activity. An in-silico study was conducted using an FDA-approved drug database, with the focus on their interaction with the HDAC6 structure. Among tested ligands, Panobinostat showed the most favourable interaction with HDAC6. In-vitro experiments on the SH-SY5Y neuronal cell line confirmed these findings, with Panobinostat inhibiting HDAC6, enhancing NEP levels, and reducing Aß load. The study suggests Panobinostat as a potential Alzheimer's therapeutic agent, mitigating Aß accumulation via NEP upregulation. Further research is required for comprehensive understanding and validation.Communicated by Ramaswamy H. Sarma.

13.
Bioinform Biol Insights ; 17: 11779322231171777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533429

RESUMO

NSP16 is one of the structural proteins of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) necessary for its entrance to the host cells. It exhibits 2'O-methyl-transferase (2'O-MTase) activity of NSP16 using methyl group from S-adenosyl methionine (SAM) by methylating the 5-end of virally encoded mRNAs and shields viral RNA, and also controls its replication as well as infection. In the present study, we used in silico approaches of drug repurposing to target and inhibit the SAM binding site in NSP16 using Food and Drug Administration (FDA)-approved small molecules set from Drug Bank database. Among the 2 456 FDA-approved molecules, framycetin, paromomycin, and amikacin were found to be significant binders against the SAM binding cryptic pocket of NSP16 with docking score of -13.708, -14.997 and -15.841 kcal/mol, respectively. Classical molecular dynamics (MD) simulation and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA)-based binding free energy calculation depicted that all these three framycetin, paromomycin, and amikacin might be promising therapeutic leads towards SARS-CoV-2 infections via host immune escape inhibition pathway.

14.
Taiwan J Ophthalmol ; 13(2): 191-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484615

RESUMO

PURPOSE: The purpose of the study is to evaluate the safety and outcomes of corneal collagen cross-linking (CXL) and different CXL protocols in progressive keratoconus (PK) population at short and long-term. MATERIALS AND METHODS: A systematic review and meta-analysis was conducted. A total of eight literature databases were searched (up to February 15, 2022). Randomized controlled trials (RCTs) comparing CXL versus placebo/control or comparing different CXL protocols in the PK population were included. The primary objective was assessment of outcomes of CXL versus placebo and comparison of different CXL protocols in terms of maximum keratometry (Kmax) or Kmax change from baseline (Δ), spherical equivalent, best corrected visual acuity (BCVA), and central corneal thickness (CCT) in both at short term (6 months) and long term (1st, 2nd, and 3rd year or more). The secondary objective was comparative evaluation of safety. For the meta-analysis, the RevMan5.3 software was used. RESULTS: A total of 48 RCTs were included. Compared to control, CXL was associated with improvement in Δ Kmax at 1 year (4 RCTs, mean difference [MD], -1.78 [-2.71, -0.86], P = 0.0002) and 2 and 3 years (1 RCT); ΔBCVA at 1 year (7 RCTs, -0.10 [-0.14, -0.06], P < 0.00001); and Δ CCT at 1 year (2 RCTs) and 3 years (1 RCT). Compared to conventional CXL (C-CXL), deterioration in Δ Kmax, ΔBCVA and endothelial cell density was seen at long term in the transepithelial CXL (TE-CXL, chemical enhancer). Up to 2 years, there was no difference between TE-CXL using iontophoresis (T-ionto) and C-CXL. At 2 and 4 years, C-CXL performed better compared to accelerated CXL (A-CXL) in terms of improving Kmax. Although CCT was higher in the A-CXL arm at 2 years, there was no difference at 4 years. While exploring heterogeneity among studies, selection of control eye (fellow eye of the same patient vs. eye of different patient) and baseline difference in Kmax were important sources of heterogeneity. CONCLUSION: CXL outperforms placebo/control in terms of enhancing Kmax and CCT, as well as slowing disease progression over time (till 3 years). T-ionto protocol, on the other hand, performed similarly to C-CXL protocol up to 2 years.

15.
Basic Clin Neurosci ; 14(1): 155-166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346867

RESUMO

Introduction: Cognitive deficit is one of the common comorbidity accompanying epilepsy. The present study evaluated the effect of Celastrus paniculatus seed extract on seizure severity and cognitive deficit following the pentylenetetrazole (PTZ)-induced chemical kindling model. Methods: PTZ kindling model was developed by daily administration of the sub-convulsive dose of PTZ 30 mg/kg for four weeks. After four weeks of induction, the following treatment, namely sodium valproic acid (SVA) 200 mg/kg, C. paniculatus 500 mg\kg, pergolide 2 mg/kg, C. paniculatus (250 mg\kg)+ Pergolide (1 mg/kg), and C. paniculatus (250 mg\kg)+ SVA (100 mg/kg) were administered 30 minutes prior to PTZ (30 mg/kg) injection for a period of next 14 days. Neurobehavioral parameters, including superoxide dismutase (SOD), Catalase (CAT), glutathione (GSH), and dopamine levels were assessed and the Morris water maze test (MWM) and Grip strength test (GPS) were performed. Hematoxylin & Eosin (H&E) staining of hippocampal cornu ammonis (CA1), CA2, CA3, dentate gyrus (DG), and frontal cortex was performed. Results: C. paniculatus (500 mg/kg) alone and in combination (C. paniculatus (250 mg\ kg)+ pergolide (1 mg/kg) and C. paniculatus (250 mg\kg)+ SVA (100 mg/kg)) significantly (P<0.05) reduced the seizure score, mean latency time, and distance traveled in the MWM. However, no significant effect was seen in GPS. Biochemical analysis showed elevated antioxidant markers, namely GSH, CAT, and SOD, and also elevated dopamine levels. C. paniculatus and its combination also significantly (P<0.05) protected against neuronal loss in the hippocampus and frontal cortex evidenced by H&E staining. Conclusion: C. paniculatus alone and in combination with other agents may have the potential to treat epilepsy and associated cognitive deficits.

16.
Heliyon ; 9(6): e16813, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303517

RESUMO

The aim of this study is to comprehensively analyze previous viral vaccine programs and identify potential challenges and effective measures for the COVID-19 vaccine program. Previous viral vaccine programs, such as those for HIV, Zika, Influenza, Ebola, Dengue, SARS, and MERS, were evaluated. Paramount challenges were identified, including quasi-species, cross-reactivity, duration of immunity, revaccination, mutation, immunosenescence, and adverse events related to viral vaccines. Although a large population has been vaccinated, mutations in SARS-CoV-2 and adverse events related to vaccines pose significant challenges. Previous vaccine programs have taught us that predicting the final outcome of the current vaccine program for COVID-19 cannot be determined at a given state. Long-term follow-up studies are essential. Validated preclinical studies, long-term follow-up studies, alternative therapeutic approaches, and alternative vaccines are necessary.

18.
Indian J Pharmacol ; 55(2): 133-137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313939

RESUMO

BACKGROUND: Aspirin is indicated in the emergency management of acute coronary syndrome. However, oral aspirin has erratic bioavailability compared to i.v. formulation. OBJECTIVE: The objective of this study was to evaluate the comparative efficacy and safety of intravenous (IV) and oral aspirin in acute coronary syndrome. STUDY DESIGN: This was a systematic review and meta-analysis. RESULTS: Two randomized controlled trials were included. Compared to oral aspirin, lower platelet aggregability was seen with IV aspirin at 5 min and 20 min. Lower thromboxane B2 and lower platelet CD-62p levels were noted in the IV group; however, no significant difference was observed in terms of "composite cardiovascular death, stroke, and myocardial infarction (MI) at 4-6 weeks," "any cause mortality," "cardiovascular mortality," "occurrence of stroke," and "occurrence of MI/reinfarction." However, no difference was noted in terms of the occurrence of serious adverse events. CONCLUSION: IV aspirin showed some advantages in terms of platelet aggregability biomarkers at 20 min and 1 week with comparable safety to oral aspirin. No difference was seen in terms of clinical outcomes (at 24 h, 7, and 30 days) and the occurrence of serious adverse events.


Assuntos
Síndrome Coronariana Aguda , Acidente Vascular Cerebral , Humanos , Síndrome Coronariana Aguda/tratamento farmacológico , Aspirina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Administração Intravenosa , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle
19.
Epilepsy Res ; 194: 107168, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302343

RESUMO

The study intends to repurpose FDA drugs and investigate the mechanism of (5HT2BR) activation by comprehending inter-residue interactions. The 5HT2BR is a novel thread, and its role in reducing seizures in Dravet syndrome is emerging. The crystal structure (5HT2BR) is a chimera with mutations; hence 3D-structure is modeled (4IB4: 5HT2BRM). The structure is cross-validated to simulate the human receptor using enrichment analysis (ROC: 0.79) and SAVESv6.0. Virtual screening of 2456 approved drugs yielded the best hits that are subjected to MM/GBSA and molecular dynamic (MD) simulations. The 2 top drugs Cabergoline (-53.44 kcal/mol) and Methylergonovine (-40.42 kcal/mol), display strong binding affinity, and ADMET/SAR analysis also suggests their non-mutagenic or non-carcinogenic nature. Methylergonovine has a weaker binding affinity and lower potency than standards [Ergotamine (agonist) and Methysergide (antagonist)] due to its higher Ki (1.32 M) and Kd (6.44 ×10-8 M) values. Compared to standards, Cabergoline has moderate binding affinity and potency [Ki = 0.85 M and Kd = 5.53 × 10-8 M]. The top 2 drugs primarily interact with conserved residues (ASP135, LEU209, GLY221, ALA225, and THR140) as in agonists, unlike the antagonist. The top 2 drugs, upon binding to the 5HT2BRM, modify the helices VI, V, and III and shift the RMSD 2.48 Å and 3.07 Å. LEU209 forms a latch with residues 207-214 (forms a lid) in the 5HT2BRM receptor, which enhances agonist binding and prevents drug escape. Methylergonovine and Cabergoline interact more stongly with ALA225 than the antagonist. The post-MD analysis of Cabergoline suggests a better MM/GBSA value (-89.21 kcal/mol) than Methylergonovine (-63.54 kcal/mol). In this study, Cabergoline and Methylergonovine's agonistic mechanism and solid binding properties suggest their strong role in regulating the 5HT2BR and might target drug-resistant epilepsy.


Assuntos
Epilepsia , Metilergonovina , Humanos , Cabergolina , Reposicionamento de Medicamentos , Simulação de Dinâmica Molecular
20.
Sci Rep ; 13(1): 9337, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291166

RESUMO

Protein-protein interactions (PPIs) play a critical role in all biological processes. Menin is tumor suppressor protein, mutated in multiple endocrine neoplasia type 1 syndrome and has been shown to interact with multiple transcription factors including (RPA2) subunit of replication protein A (RPA). RPA2, heterotrimeric protein required for DNA repair, recombination and replication. However, it's still remains unclear the specific amino acid residues that have been involved in Menin-RPA2 interaction. Thus, accurately predicting the specific amino acid involved in interaction and effects of MEN1 mutations on biological systems is of great interests. The experimental approaches for identifying amino acids in menin-RPA2 interactions are expensive, time-consuming, and challenging. This study leverages computational tools, free energy decomposition and configurational entropy scheme to annotate the menin-RPA2 interaction and effect on menin point mutation, thereby proposing a viable model of menin-RPA2 interaction. The menin-RPA2 interaction pattern was calculated on the basis of different 3D structures of menin and RPA2 complexes, constructed using homology modeling and docking strategy, generating three best-fit models: Model 8 (- 74.89 kJ/mol), Model 28 (- 92.04 kJ/mol) and Model 9 (- 100.4 kJ/mol). The molecular dynamic (MD) was performed for 200 ns and binding free energies and energy decomposition analysis were calculated using Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) in GROMACS. From binding free energy change, model 8 of Menin-RPA2 exhibited most negative binding energy of - 205.624 kJ/mol, followed by model 28 of Menin-RPA2 with - 177.382 kJ/mol. After S606F point mutation in Menin, increase of BFE (ΔGbind) by - 34.09 kJ/mol in Model 8 of mutant Menin-RPA2 occurs. Interestingly, we found a significant reduction of BFE (ΔGbind) and configurational entropy by - 97.54 kJ/mol and - 2618 kJ/mol in mutant model 28 as compared the o wild type. Collectively, this is the first study to highlight the configurational entropy of protein-protein interactions thereby strengthening the prediction of two significant important interaction sites in menin for the binding of RPA2. These predicted sites could be vulnerable for structural alternation in terms of binding free energy and configurational entropy after missense mutation in menin.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Mutação Puntual , Humanos , Mutação , Fatores de Transcrição/genética , Sítios de Ligação , Aminoácidos/genética , Proteína de Replicação A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...